Dopamine transporter: transmembrane phenylalanine mutations can selectively influence dopamine uptake and cocaine analog recognition.
نویسندگان
چکیده
Cocaine blocks the normal role of the dopamine transporter (DAT) in terminating dopamine signaling through molecular interactions that are only partially understood. Cocaine analog structure-activity studies have suggested roles for both cationic and aromatic interactions among DAT, dopamine, and cocaine. We hypothesized that phenylalanine residues lying in putative DAT transmembrane (TM) domains were good candidates to contribute to aromatic and/or cationic interactions among DAT, dopamine, and cocaine. To test this idea, we characterized the influences of alanine substitution for each of 29 phenylalanine residues lying in or near a putative DAT TM domain. Cells express 22 mutants at near wild-type levels, manifest by DAT immunohistochemistry and binding of the radiolabeled cocaine analog [(3)H](-)-2-beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane (CFT). Seven mutants fail to express at normal levels. Four mutations selectively reduce cocaine analog affinities. Alanine substitutions at Phe(76), Phe(98), Phe(390), and Phe(361) located in TM domains 1 and 2, the fourth extracellular loop near TM 4 and in TM 7, displayed normal affinities for dopamine but 3- to 8-fold reductions in affinities for CFT. One TM 3 mutation, F(155)A, selectively decreased dopamine affinity to less than 3% of wild-type levels while reducing CFT affinity less than 3-fold. In a current DAT structural model, each of the residues at which alanine substitution selectively reduces cocaine analog or dopamine affinities faces a central transporter cavity, whereas mutations that influence expression levels are more likely to lie at potential helix/helix interfaces. Specific, overlapping sets of phenylalanine residues contribute selectively to DAT recognition of dopamine and cocaine.
منابع مشابه
Dopamine transporter tryptophan mutants highlight candidate dopamine- and cocaine-selective domains.
Cocaine blocks the normal role of the dopamine transporter (DAT) in terminating dopamine signaling and in restricting its spatial spread through molecular interactions that remain largely obscure. Cocaine analog structure-activity studies suggest roles for cationic and hydrophobic interactions between DAT, dopamine, cocaine, and the sodium and chloride ions whose gradients power uptake processe...
متن کاملDopamine transporter mutants with cocaine resistance and normal dopamine uptake provide targets for cocaine antagonism.
Cocaine's blockade of dopamine reuptake by brain dopamine transporters (DAT) is a central feature of current understanding of cocaine reward and addiction. Empirical screening of small-molecule chemical libraries has thus far failed to provide successful cocaine blockers that allow dopamine reuptake in the presence of cocaine and provide cocaine "antagonism". We have approached this problem by ...
متن کاملDissociation of high-affinity cocaine analog binding and dopamine uptake inhibition at the dopamine transporter.
Cocaine initiates its euphoric effects by binding to the dopamine transporter (DAT), blocking uptake of synaptic dopamine. It has been hypothesized that the DAT transmembrane aspartic acid residue D79 forms an ionic interaction with charged nitrogen atoms in both dopamine and cocaine. We examined the consequences of novel and previously studied mutations of the D79 residue on DAT uptake of [3H]...
متن کاملRecognition of benztropine by the dopamine transporter (DAT) differs from that of the classical dopamine uptake inhibitors cocaine, methylphenidate, and mazindol as a function of a DAT transmembrane 1 aspartic acid residue.
Binding of cocaine to the dopamine transporter (DAT) protein blocks synaptic dopamine clearance, triggering the psychoactive effects associated with the drug; the discrete drug-protein interactions, however, remain poorly understood. A longstanding postulate holds that cocaine inhibits DAT-mediated dopamine transport via competition with dopamine for formation of an ionic bond with the DAT tran...
متن کاملCocaine affinity decreased by mutations of aromatic residue phenylalanine 105 in the transmembrane domain 2 of dopamine transporter.
Dopamine transporter (DAT) is a major target of cocaine, one of the most abused drugs. Major efforts have been focused on defining residues in DAT involved in cocaine binding. We have isolated the Drosophila melanogaster DAT (dDAT) cDNA, which is 10-fold less sensitive to cocaine than the mammalian DATs. Replacing transmembrane domain 2 (TM2) of mouse DAT (mDAT) with dDAT sequence reduced cocai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 56 2 شماره
صفحات -
تاریخ انتشار 1999